太阳成集团tyc151cc‍‍‍‍‍‍‍‍  
 集团首页  关于我们  团队队伍  公司新闻  教学工作  科研工作  党群工作  团学工作  公告公示  小T面对面(名师员工访谈)  文件制度 
 
 
公告公示
 集团首页 
 关于我们 
 团队队伍 
 公司新闻 
 教学工作 
 科研工作 
 党群工作 
 团学工作 
 公告公示 
 小T面对面(名师员工访谈) 
 文件制度 
 
当前位置: 集团首页>>公告公示>>正文

学术报告:大数据分析中的分布式抽样技术

发布日期:2020-10-05   来源:太阳成集团tyc151cc   点击:[]

题目:大数据分析中的分布式抽样技术


报告人:艾明要,北京大学数学科学学院统计学教研室主任、教授、博士生导师。


时间地点:2020年10月6日15时,教科A-826


摘要:Nonuniform subsampling methods are effective to reduce computational burden and maintain estimation efficiency for massive data. Existing methods mostly focus on subsampling with replacement due to its high computational efficiency. If the data volume is so large that nonuniform subsampling probabilities cannot be calculated all at once, then subsampling with replacement is infeasible to implement. This paper solves this problem using Poisson subsampling. We first derive optimal Poisson subsampling probabilities in the context of quasi-likelihood estimation under the A- and L-optimality criteria. For a practically implementable algorithm with approximated optimal subsampling probabilities, we establish the consistency and asymptotic normality of the resultant estimators. To deal with the situation that the full data are stored in different blocks or at multiple locations, we develop a distributed subsampling framework, in which statistics are computed simultaneously on smaller partitions of the full data. Asymptotic properties of the resultant aggregated estimator are investigated. We illustrate and evaluate the proposed strategies through numerical experiments on simulated and real data sets.


请2020级专硕提前10分钟到场,其他年级、专业员工有兴趣也欢迎聆听。

上一条:公司9号文件:聘用郝淑双等7人为研究生副导师 下一条:公司8号文件:关于印发研究生学业成绩综合评定细则的通知

关闭

 

版权所有:太阳成集团tyc151cc(中国)有限公司-Baidu百科‍‍‍‍‍‍‍‍      地址:郑东新区金水东路180号